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ΘΕΜΑ Α: 

Α.1]  Απόδειξη θεωρήματος ενδιάμεσων τιμών (4η απόδειξη ύλης) 

Α.2] Ορισμός 

Α.3] 

    α) ΨΕΥΔΗΣ 

    β) π.χ. η f(x)=x3  είναι γνησίως αύξουσα στο ℝ, ωστόσο f’(0)=0 αφού f’(x)=3x2 

 

Α.4] α) Λ    β) Σ    γ)Σ γιατί είναι άρτια f(-x)= ( )x x f x    με Af=ℝ 

         δ) Σ 

         ε) Σ 

 

ΘΕΜΑ Β: 

f: (1, +∞)→ℝ και f(x)=  
2

1

x

x




      ,  με x-1≠0 δηλ x≠1  με περιορισμένο Αf =  (1, +∞) 

g:ℝ→ℝ  και g(x)=ex 

 

Β.1]  fog(x)=f(g(x))   

     εύρεση του Π.Ο της σύνθεσης 
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ο τύπος της σύνθεσης    fog(x)=f(g(x))=
2

1

x

x

e

e




 



ΚΟΥΜΟΥΝΔΟΥΡΟΥ 2, ΚΑΡΔΙΤΣΑ 
 

ΜΠΙΛΙΟΥΣΗΣ  ΣΠΥΡΟΣ-ΣΤΑΥΡΑΚΟΥΔΗ  ΦΩΤΕΙΝΗ            

 

Β.2] 
1 2, fogx x A   με f(g(x1))=f(g(x2))
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                                                                άρα η fog είναι ‘1-1’ 

 

οπότε η fog αντιστρέφεται: 

 

θέτω f(x)=y
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επίσης λόγω πεδίου ορισμού πρέπει x>0 
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                                                                                                οπότε fog-1(x)=
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Β.3] Η φ συνεχής και παραγωγίσιμη με φ’(x)=
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Β.4] 
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ΘΕΜΑ Γ: 

Γ.1]  Η f είναι συνεχής άρα συνεχής και στο χ0=0 που είναι σημείο αλλαγής των 

κλάδων  

οπότε τα πλευρικά όρια στο 0 και η τιμή f(0), είναι μεταξύ τους, όλα ίσα. 
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 επίσης f(0)=1-lnλ 

οπότε πρέπει  1-lnλ=λ ln 1 0       με προφανή ρίζα το λ=1 
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     θεωρώ συνάρτηση k(λ)=λ+lnλ-1 με k’(λ)=1+
1


>0   αφού λ>0 

άρα η k(λ) είναι γνησίως αύξουσα , οπότε η  λ=1 είναι και η μοναδική ρίζα 

 

Γ.2] 

     Αρκεί να βρούμε αν η f είναι παραγωγίσιμη στο 0  

         και ν.δ.ο        f’(0)=εφ
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άρα η f είναι παραγωγίσιμη στο 0, με f’(0)=1, άρα υπάρχει εφαπτομένη 

στο σημείο Α(0,1) με λε= f’(0)=1=εφω 

                                                            οπότε ω=
4
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Γ.3]  Η f είναι παραγωγίσιμη στο σημείο αλλαγής της και οι κλάδοι της , 

είναι, παραγωγίσιμες συναρτήσεις, με: 
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εύρεση κρίσιμων σημείων: 

κρίσιμα σημεία, είναι τα εσωτερικά σημεία, του πεδίου ορισμού μιας συνάρτησης, 

στα οποία η παράγωγος μηδενίζει ή δεν ορίζεται. Στην συνάρτηση μας η παράγωγος 

ορίζεται πάντα. Άρα, αρκεί να βρούμε που μηδενίζει. 

 για x0: 2
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 για x=0: f’(0)=1 άρα ούτε το 0 δεν αποτελεί κρίσιμο σημείο της f 
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άρα η f παρουσιάζει κρίσιμα σημεία για x=
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Γ.4]M(α,f(α)) με  0   κινείται  στη  Cf   

αφού  0   λόγω  1ου κλάδου  έχουμε  ότι 
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η ε  τέμνει  τον  x’x στο σημείο Β: 
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                                                                 AΡΑ Β( 2 1,0  )  

Συνεπώς  θεωρώ  τη  συνάρτηση Βx(t)=2 α(t)-1 με  Bx’(t)= 2 '( )t  
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0 0 0 0
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ΘΕΜΑ Δ: 

Δ.1] f(x)=ex+x2-ex-1 

η f συνεχής στο [0,1] και παραγωγίσιμη στο (0,1) 

f(0)=e0+02-e  0-1=0 

f(1)=e1+12-e-1=0 οπότε από θεώρημα ROLLE υπάρχει τουλάχ. ένα 0 (0,1)x   

τέτοιο ώστε f’(x0)=0 

 

f’(x)=ex+2x-e  άρα  f’(x0)=0ex0+2x0-e=0 

θέτω κ(x)= ex+2x-e   με κ’(x)=ex+2>0  άρα   δηλαδή f’  
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εύρεση συνόλου τιμών της κ( δηλ της f’) 
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0 1

lim ( ), lim ( )
x x

x x 
  

)=(1-e, 2) 

 
0 0

lim ( ) lim( 2 ) 1x

x x
x e x e e

  
      

 
1 1

lim ( ) lim( 2 ) 2x

x x
x e x e

  
     

 

 

το 0 ανήκει στο σύνολο τιμών , οπότε η κ έχει ρίζα και μάλιστα μοναδική 

αφού η κ είναι γν. αύξουσα. 

 

έστω f(x0)=x0
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Δ.3] Θέλουμε ν.δ.ο η εξίσωση f(x)+x-x0=0 , έχει μοναδική ρίζα στο (x0,1) 

θεωρούμε τη συνάρτηση g(x)= f(x)+x-x0  , 0[ ,1]x x  

 g συνεχής στο [x0,1] 

 g(x0)=f(x0)+x0-x0=f(x0)<0 

g(1)=f(1)+1-x0=1-x0>0  αφού x0<1 

 

 άρα από θεώρημα Bolzano, έχουμε ρ που ανήκει στο(x0,1), τέτοιο ώστε g(ρ)=0 

 επειδή g’(x)=f’(x)+1>0  , το ρ είναι και μοναδικό καθώς η g είναι ‘1-1’ 

άρα υπάρχει μοναδικό ρ 0( ,1)x  τέτοιο ώστε f(ρ)+ρ=x0 

Δ.4] f(x0)>f(ρ)(f’(κ)+1)
.3

  f(x0)>(x0-ρ)(f’(κ)+1)
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 f συνεχής στο [ρ, x0] 

 f παραγωγίσιμη στο  (ρ,x0) 

 

 οπότε από Θ.Μ.Τ υπάρχει τουλάχιστον ένα ξ    0, ,1x   ώστε  
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 ρ<ξ<x0<κ<1 

(1) f’(ξ)<f’(κ)
'f
 ξ<κ  που ισχύει 


